Skip to contents

Calculate function value of ACMTF

Usage

acmtfr_fg(
  x,
  Z,
  Y,
  alpha = 1,
  beta = rep(0.001, length(Z$object)),
  epsilon = 1e-08,
  pi = 0.5,
  mu = 1e-06
)

Arguments

x

Vectorized parameters of the CMTF model.

Z

Z object as generated by setupCMTFdata().

Y

Dependent variable (regression part).

alpha

Alpha value of the loss function as specified by Acar et al., 2014

beta

Beta value of the loss function as specified by Acar et al., 2014

epsilon

Epsilon value of the loss function as specified by Acar et al., 2014

pi

Pi value of the loss function as specified by Van der Ploeg et al., 2025.

mu

Ridge term parameter for calculation of the regression coefficients rho (default = 1e-6).

Value

Scalar of the loss function value (when manual=FALSE), otherwise a list containing all loss terms.

Examples

A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100,2))
E = array(rnorm(10*2), c(10,2))

df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
Y = A[,1]

init = initializeACMTF(Z, 2, output="vect")
outcome = acmtfr_fg(init, Z, Y)
f = outcome$fn
g = outcome$gr