
Calculate function value of ACMTF
acmtfr_fun.Rd
Calculate function value of ACMTF
Arguments
- x
Vectorized parameters of the CMTF model.
- Z
Z object as generated by
setupCMTFdata()
.- Y
Dependent variable (regression part).
- alpha
Alpha value of the loss function as specified by Acar et al., 2014
- beta
Beta value of the loss function as specified by Acar et al., 2014
- epsilon
Epsilon value of the loss function as specified by Acar et al., 2014
- pi
Pi value of the loss function as specified by Van der Ploeg et al., 2025.
- mu
Ridge term parameter for calculation of the regression coefficients rho (default = 1e-6).
- manual
Manual calculation of each loss term (default FALSE).
Value
Scalar of the loss function value (when manual=FALSE), otherwise a list containing all loss terms.
Examples
A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100,2))
E = array(rnorm(10*2), c(10,2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
Y = A[,1]
init = initializeACMTF(Z, 2, output="vect")
f = acmtfr_fun(init, Z, Y)